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ESTIMATION IN NONCENTRAL DISTRIBUTIONS

Alan E. Gelfand

University of Connecticut, Storrs

1. INTRODUCTION

This paper investigates alternatives to minimum

variance unbiased (MVU) estimators in noncentral (NC)

X and F distributions. Motivation is provided by

noting that if Z \, X 2 (p;X), then i) (Z-p)/2, the MVU

for g(X) = X is inadmissible under squared error loss

(SEL), see, e.g., Perlman and Rasmussen (1975). ii)

Z - 1 . the MVU for g() = E(Z - 1) is inadmissible under

any "bowl shaped" loss since S(Z) 
= min(Z -l (p - 2 ) - l

dominates. Similar conclusions hold when WF(p,r;A).

Case (i) is of obvious interest. Case (1i) arises in h

estimatIng the improvement under !EL of the James-

Stein estimator of the multivariate normal mean, see,

e.g., Efron and Morris (1976).

Two directions will be pursued. In the first a

simple approach for uniformly improving upon MVU esti-

mators Is described and illustrated. In the second

Bayesian procedures are characterized and illustrated.

This effort extends earlier work of Perlman and

Rasmussen (1975), Neff and Strawderman (1976), and

DeWaal (19 74).



2. DISTRIBUTION THEORY AND NOTATION

In the NC X2 case, the joint density f(Z,L,X)

arises from f(ZIL,X) = f(ZIL) = X2 (p+2L), f(LtX)

- Po(M) (Poisson) and a prior T(X) on X. If

6 X % y/2 x 2 (p) (arising from X = U T p/2 with Uv'Np(0,,yI)

as discussed in, e.g., Perlman and Rasmussen (1975)),

f(XIL,Z) = f(XIL) = p/2 X 2 (p+2L), where p = y(y+l) - 1

f(yJZ) = p/2 X 2 (p, pZ/2), f(L) = NB(p/2, p) (negative

binomial with mean pp(1-p)- /2), f(Z) = (y+l)X 2 (p)

and f(LIZ) = Po(pZ/2).

If W = Z/U where Z \, x 2 (p;X) independent of

U nu x 2 (r), W has a nonnormalized NC F distribution.

The joint density f(W,L,X) arises from f(W(L,X)

- f(WIL) = r- I(p+2L)F(p+2L,r), f(LIX) and T(X) as

above.

The fact that f(ZIL,X) = f(ZIL), f(WIL,X)

= f(WIL) is useful in improving upon MVU~s. The fact

that regardless of T., f(XIL,Z) = f(XIL), f(XIL,W)

= f(XtL) is useful for finding Bayes estimators. In

this vein, if g(A) is to be estimated, let b(L)

= E(g(A)IL), a(L) be such that g(A) = E(a(L)IX). Then

a(L) helps to find improved estimators, b(L) helps to

find Bayes estimators.

In Sections 3 and 4 the methodology is examined

through a collection of examples. A summary table is

given at the end to unify the findings.

3. FINDING IMPROVED ESTIMATORS

We describe a simple approach which has been suc-

cessful in creating classes of estimators that uni-

formly improve upon the MVU of g(X) under SEL. We then

illustrate with several examples. For the NC X 2 case,

let T(Z) be the MVU of g(X). When will T(Z) + ¢(Z)

2



uniformly improve upon T(Z)? The conditional estima-

tion problem, estimating a(L), provides sufficient con-

ditions while enabling us to work with the simpler

central X 2 distribution. We note that T is unbiased

for a(L). By direct calculation we can show that the

difference in SEL between T and T+ is:

-E(I (L)IX) - 2 cov(a(L),¢(Z)jX) (1)

where

10(L) = E(4 2 IL) + 2E((T-a)¢1L) (2)

and the covariance is with respect to the joint distri-

bution of L and Z given X.

Hence if

I (L) < 0 VL (3a)

with strict inequality for some L and

coy(a,€) < 0, (3b)

then T+¢ will dominate T. If a(L) is monotone, restric-

tion of 0 such that E(¢JL) is nonincreasing in a(L)

will satisfy the covariance condition. If the range
1

of g(A) is a subinterval of R , T+¢ should be similarly

restricted. In particular, if g(X) > 0, the positive

part estimator, [T+ ] + , dominates T+O.

For the NC F all the above remarks apply with Z

replaced by W.

Examples: NC X
2

Two convenient choices of 4 are c,)- ' (2)

- ce BZ in which case the fact that, n < 1/2, m > -p/2,

IL) (p/2 + L + m) 
2m

e(p/2 + L) (l-2n) p / 2 + L + m

will be helpful. We assume p > 5.
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I) If g(X) = X, T(Z) = (Z-p)/2 and b(L) = L. For

4(1) (3b) will be satisfied if a < 0, 0 > 0 or a > 0,

-p/2 <8 < 0. For 4 (2) (3b) will be satisfied if a < 0,

0 < a < 1/2 or a > 0, 8 < 0. Clearly, for any a,8

cov(L, () ) 0 as A - 0, 1 = 1,2. (4)

If 8 > -p/ 4 , I ()(L) = 28a(F(p/2 + L)) -

.(2 ar(p/2 + L + 25) + 28f(p/2 + L + 8)). Hence

-p/4 < a < 0 requires 0 < a < -2l B1F(p/2 + L + 8)
-I

• (r(p/2 + L + 2B)) VL. Since the right-hand side is

smallest at L = 0, we obtain the condition 0 < a <

-21- 8 r(p/2 + 8)(r(p/2 + 28)) -  in agreement with Neff

and Strawderman (p. 66) and including Perlman and

Rasmussen (p. 464). If a exceeds this condition

I (0) > 0, ie, with (4), T + (1) can't dominate T.

If B > 0, we require 0 > a > -2 85(p/2 + L + 8)

-(r(p/2 + L + 28)) -I VL which is impossible as L

Fasmuss._ "1973) shows that when 8 = 1 no 0 of the form

a. + 6 yields T + 0 which dominates T, i.e., no linear

estimator can dominate T.

If B < 1/4, I (2 )(L) = a(i-48)
(p / 2 +L)

a+2B(I-28) (p+2L)n1 (L) where nl(L)

[(1-46)/(l_ 28)] Similar to the 4(1 ) case, 8<0
requires 0 < a < -2p$(i-20) -  to have I

n 1(0)tohav 1(2) < 0 VL.

If a exceeds this condition, with (4), I (2 )(0) > 0, i.e.

T + ( ) can't dominate T. If 0 < 8 < 1/4, no a < 0

works if L is sufficiently large.

ii) If g(X) = E(Z -1) (up to a constant g(A) is the

improvement of the James-Stein estimator of the multi-

variate normal mean when the variance is known), T(Z)

- z- I b(L) = (p-2+2L) For 0(i) (3b) holds if a < 0,

-p/2 < 8 < 0 or a > 0, $ > 0. For 0 ( 2 ) , (3b) holds if

< 0, 8 < 0 or a > 0, 0 < 8 < 1/2.
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If S > -p14, I (1 )(L) = 2ax(f(p/2 +L))- I

4, -1

*(28 ar(p/2 +L+28) - 20(p-2+2L) F(p/2 +L+8-l)). When

p < 8 with 8 > -p/4, (i.e., 8 > -2), 21-8(p-2+2L)-I

•r(p/2 +L+8-1)(r(p/2 +L+2)) - 
- 0 as L - -; no T+ I

which dominate T are revealed. If p > 8, -p/4 < B < -2,

0 > a > 21-8(p-2)-ir(p/2 +B-l)(r(p/2 +28))-i, T+,)
will dominate T.

If 8< 1/4, I (2)(L) = a(I-48)- (p/2 +L)

*(a-48(p-2+2L) 1 (L)). If 8 < -(p-4) -1 and 0 > a

i4(p-2) 1 (0) (8 < -(p- 4 )-  is needed to insure that

48(p-2+2L)-  1 (L) is largest at L = 0), T+ (2 ) will

dominate T. If 0 < 8 < 1/4, no a > 0 works if L is
sufficiently large.

iii) If g(X) = c <=> g() = eo cX, c > -1, T(Z)

(l-d)P/2ed Z / 2 where d = c(c+l) - I , a(L) = (c+l) L
. If,

in fact, c > 0 we can show that for both 0 (1) and (2)

there exist a,8 such that T+0 (I,% T+ (2 ) dominate T.

We omit the details.

iv) If g(? ) X 2 T(Z) = Z /4 - (p+2)Z/2

+ p(p+2)/4 and a(L) = L(L-I). Since a is monotone on

the support of L, (3b) will be satisfied for (I and
0(2) over the same ranges as in example (i).

If 8 > -p/4, I (1 )(L) = 28a(r(p/2 + L))-

• (28F(p/2 +L+28) + 2a(8+2L-l)F(p/2 +L+8)). It is

apparent that if -p/4 < 8 < 0, a > 0, I (i)(0),

I (i)(i) > 0; if 0 < 8 < 1, a < 0, I (l)(0) > 0. Here

T+O(I ) can't dominate T. Wherl 8 > 1, no a works if L

is sufficiently large; this approach doesn't reveal any
(1)

T + (, which dominate T.

If 8 < 1/4, I (2 ) (L) = a(1-48)
- (p / 2 +L)

-2 4 2•(a+ 2 8(l- 2 8)-n 1 (L)(4L (1-8) + 2L(p+28) + ap(p+2))).

5



Again we do not reveal any T + (2) which improve upon T.

However 4 = Z-2 e Z , for example, can be used success-

fully. We omit the details.

Examples: NC F

We illustrate for , = aW. (The more general
B1  B,

aW (I+W) - can be used to broaden the conclusions.

We omit the details.) It is useful to note that,

-p/2 < $ < r/2.

E(WBIL) = r(p/2 +L+$) r(r/2 -B)

r(p/2 +L) r(r/2)

which increases in L if a > 0, decreases in L if 8 < 0.

We assume p,r > 5.

v) If g(A) = X, T(W) = ((r-2)W-p)/2 and a(L) = L.

Condition (3b) will be satisfied if a > 0, -p/2 < B < 0

or a < 0, 0 < a < r/2 and for any a,$ clearly cov(L,0 )

- 0 as X -. 0.

For -p/4 < B < r/4, I (L) = ae 2 (L)-I

*(a+2B 3 (L)(p+r+2L-2)(r-28-2) ) where

2 2(L ) =r(p/2 +L+2$) r(r/2 -2)

r(p/2 +L) r(r/2)

n(L)- r(p/2 +L+a) r(r/2 -8)

r(p/2 +L+2a) r(r/2 - 20)

Note that q3(L) = O(L - 8 ) and that (p+r+2L-2)n3 (L)

increases in L for -p/4 < 8 < p(p+r--4) - I . Hence -p/4

< a < 0, 0 < a < -2 " 3 (0)(p+r-2)(r-28-2) or 0 < a

p(p+r-4) - 1 , 0 > a > -28"3(0)(p+r-2)(r-20-2)-I yields

T+¢ which dominates T. For 8 < 0, if a exceeds the con-

dition, I (0) > 0. The case B = -1 is discussed in

Perlman and Rasmussen (p. 467). At $ = 1, n 3 (L)

•(p+r+2L-2)(r-28-2)- 1 = (p+r+2L-2)(p+2L+2) -1 > 1 so that

-2 < a < 0, T+O will dominate T. In fact, if 0 = aW+y
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a more general dominating family of linear estimators

can be created in agreement with Perlman and Rasmussen

(p. 465-6).

vi) For g(X) = E(W 1 ) (up to a constant, g(X) is

the improvement of the James-Stein estimator when an

independent estimator of the variance having r degrees

of freedom is used), T = W- and a(L) = r(p-2+2L) -1 .

Here a > 0, 0 < 8 < r/2 or a < 0, -p/2 < B < 0 will

satisfy the covariance condition.

I For -p/4 < < r/4, I (L) = an 2 (L)(a-4 an3(L)n4(L))

where n4(L) = (p+r+2L-2)(p+2L-2)- (p+2L+2a-2)-l and

f3 (L)-_n4(L) increases in L if -p/4 < B < -(p(p-2+2r)

*(p(p-2)+r(p+2))
- 1 . For 6 in this range, if 0 > a

> 4 " 3 (0)n4(0), T+O will dominate T. At S = -1,

n3 (L)4(L) > (r+2)-  which requires 0 > a > -4(r+2) - 1

Hence cW -1 will dominate W -I when (r-2)(r+2)-  < c < 1.

4. BAYES ESTIMATORS

In developing Bayesian procedures under SEL, we

again turn to the conditional problem, i.e., Z/L. The

relation

7r(L) f Xe - (= T( )l(5)
L!

shows which n(L) can arise as priors. In fact, since

6 (5) is an instance of the classical moment problem, if

Tr(L)L! is a "moment sequence" (see, e.g., Feller (1966)

Sec. VII.3 for conditions) ff(L) uniquely determines

T(X). A useful case is, V > p2

X nu G(p/2 +v;y - 1 ) (Gamma with mean (p/2 +v)y), (6)

L nu NB(p/2 +v; p) (p = y(y+l)- I )

Under (6), XIL ' G(p/2 +v+L; p-

4 7



Recalling that b(L) E(g(X)IL), for the NC X 2

we have by direct calculation E(g(X)IZ) = E(b(L)IZ),

i.e., we can calculate Bayes rules using the central X 2

distribution. The same conclusions hold for the NC F

with W replacing Z.

Examples: NC X2

For a particular 7T the Bayes rule

6 (Z) = E(b(L)IZ) = Eb(L)(Z/2) m (L)(r(p/2 +L))- (

nZ(Z/2)L (L)((p/2 +L)) - 1

Denote the denominator in (7) by J (Z).

i) If g(X) = X, then from (5) b(L) = (L+l)
•*n(L+I)(rr(L)) -

Using this, straightforward manipulation yields

S(Z) ( (Z)
6 (Z) = ?Z I + p - . (8)
7TJ (Z) JT (Z)

Setting 6 (Z) to be the MVU of X in (8) leads to a

second order homogeneous linear differential equation

whose general solution is

i (Z) = e-Z/(cl+c2 fZp/
2 eZdZ) (9)

By the definition of J c cannot equal 0. But then
2 Z/2

after multiplying both sides of (9) by e and dif-

ferentiating, we see thatc X 0 can't work either.
2

Thus the MVU can't be the limit of Bayes or extended

Bayes clarifying its inadmissibility.

Applying the NB priors in (6) to (8) and denoting

the resulting rule by 6V p (Z), we have

zJ
6 (Z) p( + v + - ) . (10)

8



zJ

It is straightforward to show that for fixed p, v + -1

increases in v whence < 6 P if V1 < V 2 ' At

v = 0, J (Z) = ce pZ/2 6 0,P = p(pZ+p)/2 which is dis-

cussed at length (particularly when p = 1) in Perlman

and Rasmussen. Corresponding to the noninformative

prior, iT(L) = 1 from -r(X) = 1 (which arises in (6) at

-(p-2)/
2 , p = 1), we have 6 2 =, Z-p

p22
-l)

+ (J (Z)r(p/ 2 -1)) + 2 so that the MVU, T < 6Vl Vv.

:n fact, 6 - T+O with 0 satisfying (3b), but we
2

are unable to show that this 6 dominates T. We note

that Neff and Strawderman derive a sublcass of (8) of

proper Bayes estimators for X arising from a two-stage

prior- distrilbution and show that none of these dominate

T.

ii) Generally from (5) if g(0) X r a positive

integer b(L) = (L+r)r 7(L+r)(7(L))
- 1  In particular,

for A2 the Bayes rule becomes

S(I -) MZ J(" ) (Z) J(" (Z)

6 (Z)=4Z
2  JT +4Z(p+2) 7  +p(p+2) -rl)

TT J (Z)1+ZiT

Using an argument similar to that below (9), it may be

possible to show that the MVU can't be the limit of

Bayes or extended Bayes. Applying the NB priors in (6)

to (11), we obtain, for example, v = 0, p4 Z2 /4

+ p3 Z(p+2)/2 + p2 p(p+2)/4. cA -l

iii) If g() = ec , under (6) with c < p,

b(L) = (l-pc) - (p 2 +v+L) Bayes rules take the form

6 (Z) = (l-pc) - ( p / 2 +v)J ((l-pc)-z)/J (Z) • (12)

9



4

-/ 2 2(-)

At v : 0 we obtain (l-pc)- p / 2 e2 cZ/2(l-pc) The inad-

( missible MVU estimator would arise if p could equal -1.

iv) If g(M) = E(Z - ) = E((p-2+2L)- IjX), then

under (6), b(L) = E((p-2+2M)- IL) where MIL nu NB
-i

(p!2 +v+L), p(p+l) ), i.e.,

b(L) = r F(p/2 +v+L+m). ( m pm1 1 )p/2 +v+L

m=O r(p/2 +v+L)m! (p+l-- p+l

When v is a nonnegative integer, we have the identity

F(p/2 +v+L+m) -i l(P)P/2 +m-1

- r(p/2 +v+L)m! " (p -2 + 2 m )  p+lm=O

v+L v+L - p/2 +n-1
( n )(p-2+2n)- p

nO n

(derivable by considering the indefinite intet-ral with

respect to p of pp/2 -2 (p+l) L+v directly and through

its equivalent negative binomial expansion). This

yields the Bayes rule in the form

(I-P)P/2(2+I). -(+1)+ ) O (p/2) +L+v) (p ZL (13)

J (z)r(p/2 +v) L=0 r(p/2 +L)L! p+1 2

T

v++L -1 n
E n)(p-2+2n)-l

n=0

At v =0, interchanging order of summation in (13), we
-1 11

obtain the rule as (p+l)- E((p-2+2L)- lZ) = (p+l)-

*g(p 2Z/2(p+l)) since LIZ has a Poisson distribution.

Examples: NC F

For g(X), b(L), under n, the Bayes rule becomes

(in terms of V = W(l+W)-l ' NC Beta)

Eb(L)VL (L)r(P+r +L)(( +L))- ' (14)
46 7T

(V )= E (a (L ) IV )=  L~ 2-2v (L)Pr +L)(F(E +L)) 1

22
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Denote the denominator in (14) by K (V).

v) If g(X) = X it is straightforward to show that
_(P ) p+r -

6 (V)=(K (V))- V fV (VK 7"(V)+fK(V)). (15)

Under (6), (15) becomes (denoting the rule by 6 VI)

1

6 VP(V) = p[p/2 +v+VK /K ]. (16)

Note the similarity between (16) and (10). It is

straightforward to show that for fixed p, v + VK /K

increases in v whence 6V < 6 if V1 < v2  At

v = 0, K (V) 2 (-p /2(r(p/2))-lr(p )(l_,V) - (p + r ) / 2

so that 6 0 (V) = p/2((p+r)pV(l-pV)- +p) which is dis-

cussed in Perlman and Rasmussen (p. 466), particularly

when p = 1, (6O 1 = ((p+r)W+p)/2). Corresponding to the

noninformative prior, we obtain 6 - (r-2)W/(P) ,i

- p/2 + (W+I).(2 + r((p+r)/2) whencer(p/2 -1)-K (W(l+W) wh

T < 6 1, Vv, where T is the MVU estimator.

vi) If g(X) = E((p-2+2L)-I1X), under (6) calcula-

tions analogous to those leading to (13) yield at v = 0

the rule (p+1)- E((p-2+2L)-IjW) as in the NC X 2 case
except LIW has a negative binomial distribution.

5. SUMMARY AND DIRECTION FOR FUTURE WORK

We present P summary table of the disparate findings

in this article.

Two problems requiring further investigation are

the following. First it would be useful to link the two

estimation approaches discussed herein. More precisely,

writing the Bayes estimators in Section 4 in the form

11
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6

T+4, where T is the corresponding MVU, can we use the

SC method of Section 3 (or some other argument) to obtain

Bayes rules which uniformly improve upon the MVU? Do

any Bayes rules dominate the MVU? Second, under the

priors in (6) at, for example, v = 0 the marginal dis-

tribution of Z is (l-p)- x2(p) suggesting that for the

NC X 2 case convenient "empirical Bayes" estimators can

be developed. Do any of these estimators dominate the

corresponding MVU? Can the method of Section 3 help in

iq this regard?

Finally, the meticulous and provocative effort of

the referee is acknowledged. The paper is much improved

as a result.

4

I
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TABLE I

Improving
g(X) Estimator of the Bayes Estimator

Form T+O under SEL

= cZo General form: (8)

* e Z  Under priors in (6):(10)

See Ex. 3(1) See Ex. 4(i)

X2 - Z2e Z General form: (11)

NC See Ex. 3(iv) See Ex. 4(ii)
2

c X = aZ Under priors in (6):(12)

or e € = aeO Z

See Ex. 3(111) See Ex. 4(111)

E(Z-I) =aZ Under priors in (6):(13)
ae z*= R

See Ex. 3(ii) See Ex. 4(iv)

0 = OWO General form: (15)
X Under priors in (6):(16)

NC See Ex. 3(v) See Ex. 4(v)
F E0- , = W8

E(W) - I
See Ex. 3(vi) See Ex. 4 (vi)

13
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(" .ESTIMATION IN NONCENTRAL DISTRIBUTIONS

This paper investigates alternatives to MVU estimators in

noncentral X2 and F distributions. Two directions are pursued.

In the first, a general approach for uniformly improving on MVU

estimators is described and illustrated. In the second, Bayesian

i procedures are characterized and illustrated as well. This effort

extends earlier work of Perlman and Rasmussen and of Neff and

Strawderman.

UNCLASSI FIED

OAZ"n W nr-d



I

g

I


